Background: Osteosarcoma is the most common primary bone malignancy in children and young adults. Most failures of osteosarcoma treatment were due to resistance to chemotherapy. Development of new therapy required elucidation underlying molecular mechanism. Many miRNAs have been proved to be involved in the pathogenesis of osteosarcoma. Methods: MiR-3928 expression level was assayed by qRT-PCR. MiRNA mimics or ASO were transfected for up-regulation or down-regulation of miR-3928 expression. Cell proliferation was assayed by formazan test. Apoptosis and cell cycle were assayed by FACS. MiR-3928 targeted genes were predicated by bioinformatics algorithm (TargetScanHuman). The correlation between targeted gene and miR-3928 was analyzed by Pearson's correlation coefficient analysis. Results: MiR-3928 was down-regulated in osteosarcoma tissues. Over-expression of miR-3928 inhibited tumor growth, induced cell apoptosis, increased the percent of cells in G1 phrase and decreased the percent of cells in S phrase. Down-regulation of miR-3928 promoted cell proliferation. ERBB3, IL-6R and CDK6 may be the targeted genes of miR-3928. Conclusions: Down-expression of miR-3928 in osteosarcoma promoted tumor growth by targeting ERBB3, IL-6R and CDK6. MiR-3928 may be a potential therapy target worth further investigation.