Individuals change walking speed by regulating step frequency (SF), stride length (SL), or a combination of both (FL combinations). However, existing methods of walking speed estimation ignore this regulatory mechanism.
Objectives
This paper aims to achieve accurate walking speed estimation while enabling adaptation to inter-individual speed regulation strategies.
Methods
We first extracted thigh features closely related to individual speed regulation based on a single thigh mounted IMU. Next, an interval type-2 fuzzy inference system was used to infer and quantify the individuals’ speed regulation intentions, enabling speed estimation independent of inter-individual gait patterns. Experiments with five subjects walking on a treadmill at different speeds and with different gait patterns validated our method.
Results
The overall root mean square error (RMSE) for speed estimation was 0.0704 ± 0.0087 m/s, and the RMSE for different gait patterns was no more than 0.074 ± 0.005 m/s.
Conclusions
The proposed method provides high-accuracy speed estimation. Moreover, our method can be adapted to different FL combinations without the need for individualised tuning or training of individuals with varying limb lengths and gait habits. We anticipate that the proposed method will help provide more intuitive speed adaptive control for rehabilitation robots, especially intelligent lower limb prostheses.