The oxidative dehydrogenation (ODH) of alkanes, whereby hydrogen is removed to form unsaturated compounds, is an important process, particularly in the petrochemical industry. The ODH of lighter alkanes (C3–C6) is well-reported in the literature, and while there are several reports on the ODH of n-octane (C8), there is no reported review of the important findings in the literature. This review discusses the gas-phase ODH of n-octane occurring at high temperatures (300–550 °C). The mechanisms via which the n-octane ODH of occurs are also briefly discussed. The oxidants (mainly O2 and CO2) and catalysts (supported and unsupported metal oxides) are discussed as well as the effect of these and the temperature on the type of products formed and their various distributions. Furthermore, the review looks at the acid–base and redox properties of the catalysts and how they affect product formation. Some challenges as well as perspectives of the ODH process are also highlighted.