With the fast progression of renewable energy markets, the importance of combining different sources of power into a hybrid renewable energy system (HRES) has gained more attraction. These hybrid systems can overcome limitations of the individual generating technologies in terms of their fuel efficiency, economics, reliability and flexibility. One of the main concerns is the stochastic nature of photovoltaic (PV) and wind energy resources. Wind is often not correlated with load patterns and may be discarded sometimes when abundantly available. Also, solar energy is only available during the day time. A hybrid energy system consisting of energy storage, renewable and nonrenewable generation can alleviate the issues associated with renewable uncertainties and fluctuations. Large number of random variables and parameters in a hybrid energy system requires an optimization that most efficiently sizes the hybrid system components to realize the economic, technical and designing objectives. This chapter provides an overview of optimal sizing and optimization algorithms for hybrid renewable energy systems as well as different objective functions considered for designing such systems.