As engineering applications require management of ever larger volumes of data, ontologies offer the potential to capture, manage, and augment data with the capability for automated reasoning and semantic querying. Unfortunately, considerable barriers hinder wider deployment of ontologies in engineering. Key among these is lack of a shared top-level ontology to unify and organize disparate aspects of the field and coordinate co-development of orthogonal ontologies.As a result, many engineering ontologies are limited to their scope, and functionally difficult to extend or interoperate with other engineering ontologies. This paper demonstrates how the use of a top-level ontology, specifically the Basic Formal Ontology (BFO), greatly facilitates interoperability of multiple engineering-related ontologies. We constructed a system of formal linked ontologies by re-engineering legacy ontologies to be conformant with BFO and developing new BFO-conformant ontologies to capture knowledge in the engineering design, enterprise, human factors, manufacturing, and application domain of additive manufacturing. The resulting Integrated Framework for Additively Manufactured Products (IFAMP), including the body knowledge instantiated on its basis, serve as the basis for a proposed Design with Additive Manufacturing Method (DAMM), which we believe can support the design of innovative products with semantically enhanced ideation tools and enhanced access to application domain knowledge.The method and its facilitation through the ontological framework are demonstrated using a case study in medicine.