MicroRNAs (miRNAs) are regarded as a rising star in the biomedical industry. By monitoring slight increases in miRNA-21 levels, the possibilities of multi-type malignancy can be evaluated more precisely and earlier. However, the inconvenience and insensitivity of traditional methods for detecting miRNA-21 levels remains challenging. In this study, a partially complementary cDNA probe was designed to detect miRNA-21 with target-triggered dual amplification based on strand displacement amplification (SDA) and terminal deoxynucleotidyl transferase (TdT)-assisted amplification. In this system, the presence of miRNA-21 can hybridize with template DNA to initiate SDA, generating a large number of trigger molecules. With the assistance of TdT and dGTP, the released trigger DNA with 3′-OH terminal can be elongated to a superlong poly(guanine) sequence, and a notable fluorescence signal was observed in the presence of thioflavin T. By means of dual amplification strategy, the sensing platform showed a good response tomiRNA-21 with a detection limit of 1.7 pM (S/N = 3). Moreover, the specificity of this method was verified using a set of miRNA with sequence homologous to miRNA-21. In order to further explore its practical application capabilities, the expression of miRNA in different cell lines was quantitatively analyzed and compared with the qRT-PCR. The considerable results of this study suggest great potential for the application of the proposed approach in clinical diagnosis.