S ince its identification as a cause of antibiotic-associated pseudomembraneous colitis in 1978 (1), Clostridioides difficile has emerged as a major healthcare-associated pathogen worldwide. In the United States, C. difficile infection (CDI) rates doubled during 1996-2003 (2), and rates of CDI were reported to be 76.9 cases/10,000 discharges in 2005 (3). In a more recent national point-prevalence study including US healthcare facility in-patients, 13/1,000 patients were found to be either infected or colonized (4), a higher rate than had been previously estimated. In a national point-prevalence study of nosocomial infections in the United States, C. difficile was the most common causative pathogen overall (5). The increase largely has been attributed to the emergence of the hypervirulent strain, PCR ribotype 027 (RT027), which was identified as causative strain in 82% of cases during CDI outbreaks in Quebec, Canada, during 2001-2003 and accounted for 31% of all cases of healthcare-associated infections in the United States in 2011 (6-9). In Europe, CDI incidence varies across hospitals and countries with a weighted mean of 4.1 cases/10,000 patient-days per hospital in 2008 (10). The most recent study on CDI prevalence in Europe suggests an increase in the number of cases, reporting a mean of 7.0 cases/10,000 patient-bed days and ranging among countries from 0.7 to 28.7 cases/10,000 patient-bed days (11). The most common ribotype identified was RT027, which was detected in 4 countries: Germany, Hungary, Poland, and Romania (11). To estimate and compare the burden of CDI across the United States, the US Centers for Disease Control and Prevention (CDC) began populationbased CDI surveillance in 10 locations in 2011 (12). The European Centre for Disease Prevention and Control (ECDC) began coordinating CDI surveillance in acute care hospitals in Europe in 2016 (13). Both authorities provide case definitions based on different diagnostic approaches, including detection of C. difficile toxin A and B by enzyme immunoassay (EIA) or detection of toxin-producing C. difficile organisms by PCR. However, the use of different diagnostic algorithms to detect C. difficile might hamper comparisons between institutions and countries. Therefore, in a nationwide C. difficile multicenter prevalence study in Switzerland, we systematically compared surveillance measures based on detection of C.