In the honey bee, Apis mellifera , colonies are composed of one queen, thousands of female workers, and a few thousand seasonal males (drones) that are reared only during the reproductive season when colony resources are plentiful. Despite their transient presence in the hive, drones have the important function of mating with virgin queens, transferring their colony's genes to their mates for the production of fertilized, worker-destined eggs. Therefore, factors affecting drone health and reproductive competency may directly affect queen fitness and longevity, having great implications at the colony level. Several environmental and in-hive conditions can affect the quality and viability of drones in general and their sperm in particular. Here we review the extant studies that describe how environmental factors including nutrition, temperature, season, and age may influence drone reproductive health. We also review studies that describe other factors, such as pesticide exposure during and after development, that may also influence drone reproductive quality. Given that sperm development in drones is completed during pupation prior to adult emergence, particular attention needs to be paid to these factors during drone development, not just during adulthood. The present review showcases a growing body of evidence indicating that drones are very sensitive to environmental fluctuations and that these factors cause drones to underperform, potentially compromising the reproductive health of their queen mates, as well as the overall fitness of their colony.