With the increasing aging of the global population, the efficiency and accuracy of the elderly monitoring system become crucial. In this paper, a sensor layout optimization method, the Fusion Genetic Gray Wolf Optimization (FGGWO) algorithm, is proposed which utilizes the global search capability of Genetic Algorithm (GA) and the local search capability of Gray Wolf Optimization algorithm (GWO) to improve the efficiency and accuracy of the sensor layout in elderly monitoring systems. It does so by optimizing the indoor infrared sensor layout in the elderly monitoring system to improve the efficiency and coverage of the sensor layout in the elderly monitoring system. Test results show that the FGGWO algorithm is superior to the single optimization algorithm in monitoring coverage, accuracy, and system efficiency. In addition, the algorithm is able to effectively avoid the local optimum problem commonly found in traditional methods and to reduce the number of sensors used, while maintaining high monitoring accuracy. The flexibility and adaptability of the algorithm bode well for its potential application in a wide range of intelligent surveillance scenarios. Future research will explore how deep learning techniques can be integrated into the FGGWO algorithm to further enhance the system’s adaptive and real-time response capabilities.