When mechanical stresses, such as tensile, compressive, and frictional stresses, are applied to objects by various motions, they are accumulated in materials. Conventional mechanoresponsive materials and sensors detect one-time applied stress. However, the accumulated stresses are not visualized or measured in previous works. The present study demonstrated imaging and sensing of not only one-time but also accumulated tensile, compressive, and frictional stresses. Polyurethane (PU) film was combined with 2D layered polydiacetylene (PDA), a stimuli-responsive color-changing polymer. PDA generally exhibits no color changes with the application of tensile and compression stresses because the molecular motion leading to the color change is not induced by such mechanical stresses. Here the versatile mechanoresponsiveness was achieved using a block copolymer guest partially intercalated in the layered PDA. As the interlayer and outerlayer segments interact with PDA and PU, respectively, the applied stresses to the film are transferred from PU to PDA via the block copolymer guest. The color changes of the film imaged and quantified the accumulated work depending on the number and strength of the applied multiple stresses such as tensile, compressive, and frictional stresses. The design strategy of materials and methodology of sensing can be applied to the development of new sensors for accumulated mechanical stresses in a wide range of length and strength scales.