Abstract. We study tautological cycle classes on the Jacobian of a curve. We prove a new result about the ring of tautological classes on a general curve that allows, among other things, easy dimension calculations and leads to some general results about the structure of this ring. Further we lift a result of Herbaut and van der Geer-Kouvidakis to the Chow ring (as opposed to its quotient modulo algebraic equivalence) and we give a method to obtain further explicit cycle relations. As an ingredient for this we prove a theorem about how Polishchuk's operator D lifts to the tautological subalgebra of CH.J /.