OBJECTIVE
The aim of this study was to assess the efficacy and safety of a third-generation lentivirus-based vector encoding the feline erythropoietin (EPO) (feEPO) gene in vitro and in rodent models in vivo. This vector incorporates a genetic mechanism to facilitate the termination of the therapeutic effect in the event of supraphysiologic polycythemia, the herpes simplex virus thymidine kinase (HSV-TK) “suicide gene.”
ANIMALS
CFRK cells and replication-defective lentiviral vectors encoding feEPO were used for in vitro experiments. Eight Fischer rats were enrolled in the pilot in vivo study, 24 EPO-deficient mice were used in the initial mouse study, and 15 EPO-deficient mice were enrolled in the final mouse study.
METHODS
Efficacy of a third-generation lentivirus encoding feEPO was determined in vitro using western blot assays. Subsequently, in a series of rodent experiments, animals were administered the viral vector in progressively increasing inoculation doses with serial measurements of blood packed cell volume (PCV) over time.
RESULTS
We documented production of feEPO protein in transduced CRFK cells with subsequent cessation of production when treated with the HSV-TK substrate ganciclovir. In vivo, we demonstrated variably persistent elevated PCV values in treated rats and mice with eventual return to baseline values over time.
CLINICAL RELEVANCE
These results provide justification for a lentiviral gene therapy approach to the treatment of nonregenerative anemia associated with chronic renal disease in cats.