Effective environmental perception is critical for autonomous driving; thus, the perception system requires collecting 3D information of the surrounding objects, such as their dimensions, locations, and orientation in space. Recently, deep learning has been widely used in perception systems that convert image features from a camera into semantic information. This paper presents the MonoGhost network, a lightweight Monocular GhostNet deep learning technique for full 3D object properties estimation from a single frame monocular image. Unlike other techniques, the proposed MonoGhost network first estimates relatively reliable 3D object properties depending on efficient feature extractor. The proposed MonoGhost network estimates the orientation of the 3D object as well as the 3D dimensions of that object, resulting in reasonably small errors in the dimensions estimations versus other networks. These estimations, combined with the translation projection constraints imposed by the 2D detection coordinates, allow for the prediction of a robust and dependable Birdβs Eye View bounding box. The experimental outcomes prove that the proposed MonoGhost network performs better than other state-of-the-art networks in the Birdβs Eye View of the KITTI dataset benchmark by scoring 16.73% on the moderate class and 15.01% on the hard class while preserving real-time requirements.