Background/Objectives: Magnetic Resonance Imaging (MRI) plays a vital role in brain tumor diagnosis by providing clear visualization of soft tissues without the use of ionizing radiation. Given the increasing incidence of brain tumors, there is an urgent need for reliable diagnostic tools, as misdiagnoses can lead to harmful treatment decisions and poor outcomes. While machine learning has significantly advanced medical diagnostics, achieving both high accuracy and computational efficiency remains a critical challenge. Methods: This study proposes a hybrid model that integrates MobileNetV2 for feature extraction with a Support Vector Machine (SVM) classifier for the classification of brain tumors. The model was trained and validated using the Kaggle MRI brain tumor dataset, which includes 7023 images categorized into four types: glioma, meningioma, pituitary tumor, and no tumor. MobileNetV2’s efficient architecture was leveraged for feature extraction, and SVM was used to enhance classification accuracy. Results: The proposed hybrid model showed excellent results, achieving Area Under the Curve (AUC) scores of 0.99 for glioma, 0.97 for meningioma, and 1.0 for both pituitary tumors and the no tumor class. These findings highlight that the MobileNetV2-SVM hybrid not only improves classification accuracy but also reduces computational overhead, making it suitable for broader clinical use. Conclusions: The MobileNetV2-SVM hybrid model demonstrates substantial potential for enhancing brain tumor diagnostics by offering a balance of precision and computational efficiency. Its ability to maintain high accuracy while operating efficiently could lead to better outcomes in medical practice, particularly in resource limited settings.