2023
DOI: 10.54097/fcis.v4i2.9761
|View full text |Cite
|
Sign up to set email alerts
|

A Lightweight Dual-Branch Image Dehazing Network based on Associative Learning

Abstract: Haze degrades the clarity, contrast, and details of images, resulting in a decrease in image quality. Image dehazing provides a means to obtain clearer and more accurate image information. Traditional methods for haze removal typically rely on manually designed features and models, limiting their performance in complex scenes. In recent years, the rapid advancement of deep learning has offered new insights into addressing the image dehazing problem. This paper proposes a lightweight dual-branch image dehazing … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 24 publications
0
0
0
Order By: Relevance