AOPC 2023: Computing Imaging Technology 2023
DOI: 10.1117/12.3007623
|View full text |Cite
|
Sign up to set email alerts
|

A lightweight fringe analysis network based on deep learning

Yuxuan Che,
Wei Yin

Abstract: Recently, deep learning has yielded transformative success across optics and photonics, especially in optical metrology. Deep neural networks (DNNs) with a fully convolutional architecture (e.g., U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks, such as fringe denoising, phase unwrapping, and fringe analysis. However, the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 13 publications
0
0
0
Order By: Relevance