2022
DOI: 10.48550/arxiv.2201.03655
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Likelihood Ratio based Domain Adaptation Method for E2E Models

Abstract: End-to-end (E2E) automatic speech recognition models like Recurrent Neural Networks Transducer (RNN-T) are becoming a popular choice for streaming ASR applications like voice assistants. While E2E models are very effective at learning representation of the training data they are trained on, their accuracy on unseen domains remains a challenging problem. Additionally, these models require paired audio and text training data, are computationally expensive and are difficult to adapt towards the fast evolving natu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?