El control óptimo y aprendizaje por refuerzo lleva asociada una "función de valor'' que debe ser adecuadamente aproximada. Estos problemas de aproximar funciones de valor tienen, usualmente, diferentes requerimientos de precisión en diferentes regiones del espacio de estados. Un mallado uniforme tiene problemas porque desperdicia recursos en regiones en las que la función de valor es suave, mientras que no tiene la suficiente resolución en zonas con grandes cambios en dicha función. El presente trabajo propone una metodología de programación dinámica aproximada con mallado adaptativo, para poder adaptarse a dichos requerimientos cambiantes sin incrementar en exceso el número de parámetros del aproximador. La propuesta se basa en mallados simpliciales y en el error en la ecuación de Bellman con un criterios para añadir y quitar puntos del mallado: se modificarán propuestas de la literatura incluyendo el volumen de los símplices afectados en los criterios, y se detallarán las manipulaciones de la triangulación necesarias.