2016
DOI: 10.48550/arxiv.1609.02898
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Linear-Time Variational Integrator for Multibody Systems

Abstract: We present an efficient variational integrator for simulating multibody systems. Variational integrators reformulate the equations of motion for multibody systems as discrete Euler-Lagrange (DEL) equation, transforming forward integration into a root-finding problem for the DEL equation. Variational integrators have been shown to be more robust and accurate in preserving fundamental properties of systems, such as momentum and energy, than many frequently used numerical integrators. However, state-of-the-art al… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 16 publications
0
2
0
Order By: Relevance
“…Collocation methods approximate the locus of configuration using high-order polynomials. Unlike these general-purpose integrators, special integrators such as Lie-group integrators [15] and variational integrators [17] can be developed to respect the Lie group structure of articulated bodies, resulting in desirable conservative properties in linear/angular momentum and the Hamiltonian.…”
Section: Time Integration Schemesmentioning
confidence: 99%
See 1 more Smart Citation
“…Collocation methods approximate the locus of configuration using high-order polynomials. Unlike these general-purpose integrators, special integrators such as Lie-group integrators [15] and variational integrators [17] can be developed to respect the Lie group structure of articulated bodies, resulting in desirable conservative properties in linear/angular momentum and the Hamiltonian.…”
Section: Time Integration Schemesmentioning
confidence: 99%
“…First, numerical dissipation cannot totally be avoided, although we can reduce it using smaller timestep sizes or highorder collocation methods. Second, to recast the articulated body dynamics as an optimization problem and avoid high-order derivatives, we discretize the velocities in a Euclidean workspace, instead of using a Lie-Group structure [17]. As a result, our PBAD method can be less accurate compared with Lie-Group integrators.…”
Section: Conclusion Limitations and Future Workmentioning
confidence: 99%