Aims. We propose to infer the output of the ionising continuum-leaking properties of galaxies based upon their Lyα line profiles. Methods. We carried out Lyα radiation transfer calculations in two models of H ii regions. These models are porous to ionising continuum escape: 1) we define Lyman-continuum (LyC) optically thin star clusters, in which massive stars produce enough ionising photons to keep the surrounding interstellar medium transparent to the ionising continuum, in other words, almost totally ionised; and 2) we define riddled ionisation-bounded media that are surrounded by neutral interstellar medium, but have holes, which results in a covering fraction lower than unity. Results. The Lyα spectra that emerge from these configurations have distinctive features: 1) a classical asymmetric redshifted profile in the first case, but with a small shift of the profile maximum compared to the systemic redshift (v peak ≤ 150 km s −1 ); 2) a main peak at the systemic redshift in the second case (v peak = 0), with a non-zero Lyα flux bluewards of the systemic redshift as a consequence. If in a galaxy that leaks ionising photons the Lyα component that emerges from the leaking star cluster(s) is assumed to dominate the total Lyα spectrum, the Lyα shape may be used as a pre-selection tool for detecting LyC-leaking galaxies in objects with high spectral resolution Lyα spectra (R ≥ 4000). Our predictions are corroborated by examination of a sample of ten local starbursts with high-resolution HST/COS Lyα spectra that are known in the literature as LyC leakers or leaking candidates. Conclusions. Observations of Lyα profiles at high resolution are expected to show definite signatures revealing the escape of Lyman-continuum photons from star-forming galaxies.