In this paper we continue with our work in Lederman and Wolanski (Ann Math Pura Appl 187(2):197-220, 2008) where we developed a local monotonicity formula for solutions to an inhomogeneous singular perturbation problem of interest in combustion theory. There we proved local monotonicity formulae for solutions u ε to the singular perturbation problem and for u = lim u ε , assuming that both u ε and u were defined in an arbitrary domain D in R N +1 . In the present work we obtain global monotonicity formulae for limit functions u that are globally defined, while u ε are not. We derive such global formulae from a local one that we prove here. In particular, we obtain a global monotonicity formula for blow up limits u 0 of limit functions u that are not globally defined. As a consequence of this formula, we characterize blow up limits u 0 in terms of the value of a density at the blow up point. We also present applications of the results in this paper to the study of the regularity of ∂{u > 0} (the flame front in combustion models). The fact that our results hold for the inhomogeneous singular perturbation problem allows a very wide applicability, for instance to problems with nonlocal diffusion and/or transport.