For spatial and network data, we consider models formed from a Markov random field (MRF) structure and the specification of a conditional distribution for each observation. At issue, fast simulation from such MRF models is often an important consideration, particularly when repeated generation of large numbers of data sets is required (e.g., for approximating sampling distributions). However, a standard Gibbs strategy for simulating from MRF models involves single-updates, performed with the conditional distribution of each observation in a sequential manner, whereby a Gibbs iteration may become computationally involved even for relatively small samples. As an alternative, we describe a general way to simulate from MRF models using Gibbs sampling with "concliques" (i.e., groups of non-neighboring observations). Compared to standard Gibbs sampling, this simulation scheme can be much faster by reducing Gibbs steps and by independently updating all observations per conclique at once. We detail the simulation method, establish its validity, and assess its computational performance through numerical studies, where speed advantages are shown for several spatial and network examples. arXiv:1808.04739v1 [stat.CO]