The static behaviour of an elastoplastic axial lattice is studied in this paper through both discrete and nonlocal continuum analyses. The elastoplastic lattice system is composed of piecewise linear hardening–softening elastoplastic springs connected between each other via nodes, loaded by concentrated tension forces. This inelastic lattice evolution problem is ruled by some difference equations, which are shown to be equivalent to the finite difference formulation of a continuous elastoplastic bar problem under distributed tension load. Exact solutions of this inelastic discrete problem are obtained from the resolution of this piecewise linear difference equations system. Localization of plastic strain in the first elastoplastic spring, connected to the fixed end, is observed in the softening range. A continuous nonlocal elastoplastic theory is then built from the lattice difference equations using a continualization process, based on a rational asymptotic expansion of the associated pseudo-differential operators. The continualized lattice-based model is equivalent to a distributed nonlocal continuous elastoplastic theory coupled to a cohesive elastoplastic model, which is shown to capture efficiently the scale effects of the reference axial lattice. The hardening–softening localization process of the nonlocal elastoplastic continuous model strongly depends on the lattice spacing, which controls the size of the nonlocal length scales. An analogy with the one-dimensional lattice system in bending is also shown. The considered microstructured elastoplastic beam is a Hencky bar-chain connected by elastoplastic rotational springs. It is shown that the length scale calibration of the nonlocal model strongly depends on the degree of the difference equations of each lattice model (namely axial or bending lattice). These preliminary results valid for one-dimensional systems allow possible future developments of new nonlocal elastoplastic models, including two- or even three-dimensional elastoplastic interactions.