2010
DOI: 10.1007/s10898-010-9544-6
|View full text |Cite
|
Sign up to set email alerts
|

A logarithmic-quadratic proximal point scalarization method for multiobjective programming

Abstract: Proximal point algorithm, Scalar representations, Multiobjective programming,

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0
9

Year Published

2015
2015
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(14 citation statements)
references
References 5 publications
0
5
0
9
Order By: Relevance
“…When F is convex in (1), Bonnel at al. [5] have been proved the convergence of the proximal point method for a weak Pareto solution of the problem (1) in a general context, see also Villacorta and Oliveira [31] using proximal distances and Gregório and Oliveira [11] using a logarithmic quadratic proximal scalarization method.…”
Section: Introductionmentioning
confidence: 98%
“…When F is convex in (1), Bonnel at al. [5] have been proved the convergence of the proximal point method for a weak Pareto solution of the problem (1) in a general context, see also Villacorta and Oliveira [31] using proximal distances and Gregório and Oliveira [11] using a logarithmic quadratic proximal scalarization method.…”
Section: Introductionmentioning
confidence: 98%
“…Todavia, a indução de uma medida de distância de Bregman ou entrópica difere substancialmente a de Auslender e a de Gregório e Oliveira [4], pois a proposta do integrado mescla ponderadamente as características de ambas medidas de distância para qualquer α ∈ [0, 1].…”
Section: Método De Reescalamento Não-linear Integradounclassified
“…Apresentamos uma nova função ψ cujo conjugado convexoé a função logarítmica-quadrática, a qualé variante a de Auslender [1]. Entretanto, a medida de distância difere-se substancialmente a de Auslender e de Gregório e Oliveira [4]. Nós apresentamos uma abordagem primal-dual de reescalamento não-linear integrado no sentido de Griva e Polyak [3] com estratégia previsor-corretor proposta por Pinheiro [9].…”
Section: Introductionunclassified
“…Other authors have proposed variants of the algorithm considered by Bonnel, Iusem, and Svaiter [7] for convex vector or multiobjective problems; see, for instance, Ceng and Yao [11], Ceng, Mordukhovich, and Yao [12], Choung, Mordukhovich, and Yao [13], Gregório and Oliveira [31], and Villacorta and Oliveira [52]. Recently, the R m + -quasi-convex case was discussed in Bento, Cruz Neto, and Soubeyran [4] and Apolinário, Papa Quiroz, and Oliveira [1]; see the definition of R m + -quasi-convexity on section 2.…”
Section: Introductionmentioning
confidence: 99%