[1] Signatures of Alfvén wave phase mixing in the Earth's magnetosphere, observed as polarization rotation of a transverse, Pc5 magnetospheric pulsation, are presented and compared to theory. The polarization rotation occurred during a rare event of a dayside narrowband ULF magnetospheric pulsation that lasted for 5 consecutive days, from 24 to 30 November 1997; details of this event were reported by Sarris et al. (2009) through observations at geosynchronous orbit and on the ground. In this paper we investigate the polarization signatures of the pulsation by performing a detailed analysis of its transverse components as observed through hodogram plots. Density measurements from one of the Los Alamos National Laboratory (LANL) spacecraft which had its L shells closest to GOES-8 are used to calculate field line resonance frequencies at geosynchronous orbit; these frequency calculations show good agreement with the observed pulsations but also have a local time offset. For an instance of an observed polarization rotation we estimate the observed poloidal lifetime of the pulsation by the time taken for the poloidal and toroidal amplitudes to become equal, which we compare with the theoretical approximation to the poloidal lifetime, as calculated in a box model magnetosphere by Mann and Wright (1995). Density measurements from different LANL spacecraft at geosynchronous orbit and their varying L shells as derived from their varying local times are used to estimate a local gradient in the local Alfvén speed, which is then used in the calculation of the predicted poloidal lifetime. This is the first time that such polarization rotations are directly observed and compared with theoretical predictions.Citation: Sarris, T. E., A. N. Wright, and X. Li (2009), Observations and analysis of Alfvén wave phase mixing in the Earth's magnetosphere,