The zebrafish is a popular model for studies of vertebrate development and toxicology. However, in vitro approaches with this organism have not been fully exploited because cell culture systems have been unavailable. We developed methods for the culture of cells from blastula-stage diploid and haploid zebrafish embryos, as well as cells from the caudal and pelvic fin, gill, liver, and viscera of adult fish. The haploid embryo-derived cells differentiated in culture to a pigmented phenotype and expressed, upon exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin, a protein that was immunologically and functionally similar to rainbow trout cytochrome P450IA1. Zebrafish cultures were grown in a complex basal nutrient medium supplemented with insulin, trout embryo extract, and low concentrations of trout and fetal bovine serum; they could not be maintained in conventional culture medium containing a high concentration of mammalian serum. Using calcium phosphate-mediated transfection, a plasmid constructed for use in mammalian cells was introduced into zebrafish embryo cell cultures and expressed in a stable manner. These results indicated that the transfection procedures utilized in mammalian systems can also be applied to zebrafish cell cultures, providing a means for in vitro alteration of the genotype and phenotype of the cells.