2017
DOI: 10.1093/jamia/ocx033
|View full text |Cite
|
Sign up to set email alerts
|

A longitudinal analysis of data quality in a large pediatric data research network

Abstract: While data quality is recognized as a critical aspect in establishing and utilizing a CDRN, the findings from data quality assessments are largely unpublished. This paper presents a real-world account of studying and interpreting data quality findings in a pediatric CDRN, and the lessons learned could be used by other CDRNs.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
57
0
6

Year Published

2017
2017
2024
2024

Publication Types

Select...
8
1

Relationship

4
5

Authors

Journals

citations
Cited by 57 publications
(66 citation statements)
references
References 19 publications
1
57
0
6
Order By: Relevance
“…2 Another recent study, published in 2017, described experience with regular assessment of data quality within a large pediatric data research network. 3,4 A similar summary exist for the Sentinel network. 5 This paper provides a summary of the current state of the art and future trends presented at a conference workshop focused on examining current and novel methods in assessing data quality.…”
Section: Introductionsupporting
confidence: 55%
See 1 more Smart Citation
“…2 Another recent study, published in 2017, described experience with regular assessment of data quality within a large pediatric data research network. 3,4 A similar summary exist for the Sentinel network. 5 This paper provides a summary of the current state of the art and future trends presented at a conference workshop focused on examining current and novel methods in assessing data quality.…”
Section: Introductionsupporting
confidence: 55%
“…And the types of data quality issues have evolved over time as the ETL processes and network has matured. 4 Like PEDSnet, other data networks have developed data quality processes. We examined over 11,000 data quality rules used in six large data networks of varying size and maturity.…”
Section: Data Quality Within the Context Of The Pedsnet (Presented Bymentioning
confidence: 99%
“…24 Distributed research networks that leverage EHR data for clinical research have developed frameworks for assessing quality of EHR data, but these frameworks have not been adopted by machine learning product developers. [100][101][102] Incorporating high quality data into a model is as important as incorporating that same data into a pharmaceutical clinical trial. However, reporting the results of data quality assessments rarely accompanies reporting of model performance.…”
Section: Challenges and Opportunitiesmentioning
confidence: 99%
“…Patientenregister verfolgen gerade nicht den analytischen Ansatz einer klinischen Studie, bei dem eine Intervention unter kontrollierten und vergleichbaren Bedingungen evaluiert wird, sondern erfassen Daten aus vielen, möglicherweise stark unterschiedlichen Behandlungsumgebungen. Gerade die Einhaltung einheitlicher Standards der Dokumentation stellt in Patientenregistern eine besondere Herausforderung dar, die unmittelbar mit der Qualität und Interpretierbarkeit der Daten verbunden ist [10,27]. Der Vorwurf minderer Datenqualität im Kontext von Registern trifft jedoch auf die Pädiatrische Onkologie weniger zu, da die Pädiatrische Onkologie gekennzeichnet ist nicht nur durch eine flächendeckende epidemiologische Erfassung im Rahmen des Deutschen Kinderkrebsregisters, sondern auch durch eine Vollzähligkeit und Vollständigkeit der Erhebung klinischer Daten im Rahmen der jeweiligen Studiengruppen.…”
Section: Introductionunclassified