A Lie group G endowed with a left invariant Riemannian metric g is called Riemannian Lie group. Harmonic and biharmonic maps between Riemannian manifolds is an important area of investigation. In this paper, we study different aspects of harmonic and biharmonic homomorphisms between Riemannian Lie groups. We show that this class of biharmonic maps can be used at the first level to build examples but, as we will see through this paper, its study will lead to some interesting mathematical problems in the theory of Riemannian Lie groups.