This version is available at http://eprints.hud.ac.uk/id/eprint/31039/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or notforprofit purposes without prior permission or charge, provided:• The authors, title and full bibliographic details is credited in any copy;• A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way.For more information, including our policy and submission procedure, please contact the Repository Abstract-Partial discharge (PD) is one of the predominant factors to be controlled to ensure reliability and undisrupted functions of power generators, motors, Gas Insulated Switchgear (GIS) and grid connected power distribution equipment, especially in the future smart grid. The emergence of wireless technology has provided numerous opportunities to optimise remote monitoring and control facilities that can play a significant role in ensuring swift control and restoration of HV plant equipment. In order to monitor PD, several approaches have been employed, however, the existing schemes do not provide an optimal approach for PD signal analysis, and are very costly. In this paper an RTL-SDR (Software Defined Radio) based spectrum analyser has been proposed in order to provide a potentially low cost solution for PD detection and monitoring. Initially, a portable spectrum analyser has been used for PD detection that was later replaced by an RTL-SDR device. The proposed schemes exhibit promising results for spectral detection within the VHF and UHF band.