2018
DOI: 10.1155/2018/6569826
|View full text |Cite
|
Sign up to set email alerts
|

A Low-Cost Vehicle Anti-Theft System Using Obsolete Smartphone

Abstract: In modern society, vehicle theft has become an increasing problem to the general public. Deploying onboard anti-theft systems could relieve this problem, but it often requires extra investment for vehicle owners. In this paper, we propose the idea of PhoneInside, which does not need a special device but leverages an obsolete smartphone to build a low-cost vehicle anti-theft system. After being fixed in the vehicle body with a car charger, the smartphone can detect vehicle movement and adaptively use GPS, cellu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 25 publications
0
1
0
1
Order By: Relevance
“…El protocolo BLE se utiliza comúnmente para dispositivos de seguimiento y monitorización de la salud, mientras que Zigbee se utiliza en aplicaciones industriales y de domótica. Otras tecnologías inalámbricas de bajo consumo energético, como LoRaWAN y Sigfox, también han ganado popularidad en los últimos años debido a su bajo costo y eficiencia energética [5].…”
Section: Antecedentes Y Contexto De La Investigaciónunclassified
“…El protocolo BLE se utiliza comúnmente para dispositivos de seguimiento y monitorización de la salud, mientras que Zigbee se utiliza en aplicaciones industriales y de domótica. Otras tecnologías inalámbricas de bajo consumo energético, como LoRaWAN y Sigfox, también han ganado popularidad en los últimos años debido a su bajo costo y eficiencia energética [5].…”
Section: Antecedentes Y Contexto De La Investigaciónunclassified
“…For the past few years, neural network models based on the bidirectional long short-term memory (Bi-LSTM) networks have achieved excellent application performance in their respective fields and have shown a vitality of the Bi-LSTM in the field of the sequential data processing [7,8].…”
Section: Introductionmentioning
confidence: 99%