Coordination polymers (CPs) have been widely studied because of their diverse and adjustable topologies and wide‐ranging applications in luminescence, chemical sensors, magnetism, photocatalysis, gas adsorption and separation. In the present work, two coordination polymers, namely poly[(μ5‐benzene‐1,3,5‐tricarboxylato‐κ6O1:O1′:O3:O3:O5,O5′){μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}di‐μ3‐hydroxido‐dicobalt(II)], [Co2(C9H3O6)(OH)(C12H12N6)]n or [Co2(btc)(OH)(mtrb)]n, (1), and poly[[diaquabis(μ3‐benzene‐1,3,5‐tricarboxylato‐κ3O1:O3:O5)bis{μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}tetra‐μ3‐hydroxido‐tetracopper(II)] monohydrate], {[Cu4(C9H3O6)2(OH)2(C12H12N6)2(H2O)2]·H2O}n or {[Cu4(btc)2(OH)2(mtrb)2(H2O)2]·H2O}n, (2), were synthesized by the hydrothermal method using 1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene (mtrb) and benzene‐1,3,5‐tricarboxylate (btc3−). CP (1) exhibits a (3,8)‐coordinated three‐dimensional (3D) network of the 3,8T38 topological type, with a point symbol of {4,5,6}2{42·56·616·72·82}, based on the tetranuclear hydroxide cobalt(II) cluster [Co4(μ3‐OH)2]. CP (2) shows a (3,8)‐coordinated tfz‐d topology, with a point symbol of {43}2{46·618·84}, based on the tetranuclear hydroxide copper(II) cluster [Cu4(μ3‐OH)2]. The different (3,8)‐coordinated 3D networks based on tetranuclear hydroxide–metal clusters of (1) and (2) are controlled by the different central metal ions [CoII for (1) and CuII for (2)]. The thermal stabilities and solid‐state optical diffuse‐reflection spectra were measured. The energy band gaps (Eg) obtained for (1) and (2) were 2.72 and 2.29 eV, respectively. CPs (1) and (2) exhibit good photocatalytic degradation of the organic dyes methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation.