2023
DOI: 10.14569/ijacsa.2023.0141093
|View full text |Cite
|
Sign up to set email alerts
|

A Machine Learning Approach for Emotion Classification in Bengali Speech

Md. Rakibul Islam,
Amatul Bushra Akhi,
Farzana Akter
et al.

Abstract: In this research work, we have presented a machine learning strategy for Bengali speech emotion categorization with a focus on Mel-frequency cepstral coefficients (MFCC) as features. The commonly utilized method of MFCC in speech processing has proved effective in obtaining crucial phoneme-specific data. This paper analyzes the efficacy of four machine learning algorithms: Random Forest, XGBoost, CatBoost, and Gradient Boosting, and tackles the paucity of research on emotion categorization in non-English langu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance