2022
DOI: 10.1016/j.jisa.2022.103125
|View full text |Cite
|
Sign up to set email alerts
|

A machine learning approach for detecting fast flux phishing hostnames

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
5

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(10 citation statements)
references
References 51 publications
0
5
0
5
Order By: Relevance
“…The hybrid features provide accurate representations of emails by combining their content and textual traits. Additionally, [21] conducts a systematic literature survey comparing various phishing detection approaches, and [22] proposes a machine learning-based approach for detecting phishing websites using a novel set of features.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The hybrid features provide accurate representations of emails by combining their content and textual traits. Additionally, [21] conducts a systematic literature survey comparing various phishing detection approaches, and [22] proposes a machine learning-based approach for detecting phishing websites using a novel set of features.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Em [Nagunwa et al 2022], é proposta uma abordagem baseada em aprendizado de máquina para detecc ¸ão de sites de phishing hospedados em redes fast-flux. Ao todo foram utilizados 56 atributos cuja efetividade para previsão foi avaliada no contexto de classificac ¸ão binária e multi-classe.…”
Section: Código Descric ¸ãOunclassified
“…Atributos relacionados ao conteúdo HTML, texto da URL e informac ¸ões de servic ¸os externos foram selecionados de outros trabalhos de detecc ¸ão de phishing por heurísticas ou aprendizado de máquina como em [Rao and Pais 2019], [Shahrivari et al 2020] e [Zhang et al 2007]. Também foram selecionados atributos utilizados para detecc ¸ão de redes fast-flux como os utilizados em [Stalmans and Irwin 2011] e [Nagunwa et al 2022].…”
Section: Selec ¸ãO De Atributosunclassified
See 2 more Smart Citations