A machine learning approach for predicting radiation-induced hypothyroidism in patients with nasopharyngeal carcinoma undergoing tomotherapy
Ke-Run Quan,
Wen-Rong Lin,
Jia-Biao Hong
et al.
Abstract:The purpose of this study was to establish an integrated predictive model that combines clinical features, DVH, radiomics, and dosiomics features to predict RIHT in patients receiving tomotherapy for nasopharyngeal carcinoma. Data from 219 patients with nasopharyngeal carcinoma were randomly divided into a training cohort (n = 175) and a test cohort (n = 44) in an 8:2 ratio. RIHT is defined as serum thyroid-stimulating hormone (TSH) greater than 5.6 μU/mL, with or without a decrease in free thyroxine (FT4). Cl… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.