2023
DOI: 10.1111/poms.14018
|View full text |Cite
|
Sign up to set email alerts
|

A machine learning approach to deal with ambiguity in the humanitarian decision‐making

Abstract: One of the major challenges for humanitarian organizations in response planning is dealing with the inherent ambiguity and uncertainty in disaster situations. The available information that comes from different sources in postdisaster settings may involve missing elements and inconsistencies, which can hamper effective humanitarian decision‐making. In this paper, we propose a new methodological framework based on graph clustering and stochastic optimization to support humanitarian decision‐makers in analyzing … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
references
References 66 publications
0
0
0
Order By: Relevance