Background:As cyber-physical systems (CPS) continue to grow, it is progressively crucial to address the challenges of data protection using artificial intelligence (AI). Objective:The goal of this research is to provide an up-to-date overview of the security and privacy issues of CPS that incorporate AI techniques. Method:To achieve this, the author conducted a systematic literature review, focusing on 35 relevant articles. Results:The data collected from these studies was then categorized into three main areas: 1) different security and privacy issues, 2) application areas and vulnerabilities, and 3) the AI techniques used to address security and privacy concerns. The literature review highlights that intrusion detection and cyberattacks are the most commonly studied areas in CPS, while Machine Learnning (ML)-based attacks and vessel trajectory are less explored. The review identifies various CPS applications such as water treatment, energy, healthcare, and transportation that address security and privacy concerns. However, a relatively small proportion of studies focused on the manufacturing domain. The review also notes that while supervised machine learning algorithms under the classification category are commonly used to address data protection issues, there are comparatively fewer studies that have implemented automation processes using robots and deep learning. Limitations:The articles related to blockchain-based research were not included in this review to focus solely on AI techniques. Conclusion:The results of this analysis indicate that there is a significant need for innovative AI/ML techniques to protect intelligent systems and networks from ML-based security threats.