2020
DOI: 10.17762/turcomat.v11i3.13605
|View full text |Cite
|
Sign up to set email alerts
|

A Machine Learning-based Approach for Intrusion Detection and Prevention in Computer Networks

Abstract: The potential of cyberattacks and network penetration has increased due to modern enterprises' increasing reliance on computer networks. Such attacks are detected and prevented by intrusion detection and prevention systems (IDPS), although conventional rule-based solutions have difficulties identifying unidentified attacks. Due to its capacity to learn from data and spot patterns of assault that conventional methods could miss, machine learning (ML) techniques have been gaining prominence in IDPS. This article… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?