2021
DOI: 10.21203/rs.3.rs-503867/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Machine Learning Framework for Predicting Drug-drug Interactions

Abstract: Understanding drug-drug interaction is an essential step to reduce the risk of adverse drug events before clinical drug co-prescription. Existing methods commonly integrate multiple heterogeneous data sources to increase model performance but result in a high model complexity. To elucidate the molecular mechanisms behind drug-drug interactions and reserve rational biological interpretability is a major concern in computational modeling. In this study, we propose a simple representation of drug target profiles … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 32 publications
0
0
0
Order By: Relevance