2018
DOI: 10.2174/2213275911666180719113759
|View full text |Cite
|
Sign up to set email alerts
|

A Machine Learning Prediction Model for Automated Brain Abnormalities Detection

Abstract: Background: The rapid improvement in technology enables an Electroencephalogram (EEG) to detect a diverse range of brain disorders easily. The design of sophisticated signal processing methods for an efficient analysis of the EEG signals is exceptionally essential. Raw EEG signal is contaminated by noise and artefacts that modify the spectral-spatial and temporal information of the signal and renders inaccurate clinical interpretation. Denoising of the signal is the first step to refine the signal quality and … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?