A machine learning predictive model of in-hospital mortality in patients with sepsis complicated by anemia: a retrospective study based on the MIMIC-III database
Abstract:BackgroudPatients with sepsis complicated by anemia have a higher risk of mortality. It is clinically important to study the risk factors associated with the prognosis of this disease. The aim of this study was to establish a predictive model of mortality during hospitalization by extracting clinical data from the Medical Information Mart for Intensive Care III (MIMIC-III) database. MethodsThe clinical data of patients with sepsis complicated by anemia in the MIMIC-III database were retrospectively analyzed. I… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.