A rapid and cost-effective technique for identification of microorganisms was explored using fluorescence microscopy and image analysis, and classification was done with trained neural network. The microorganisms used in this study are Bacillus thuringiensis (C399), Escherichia coli K12 (ATCC 10798), Lactobacillus brevis (LJH240), Listeria innocua (C366), and Staphylococcus epidermis (LJH343). After staining the microorganisms with fluorescent dyes [diamidino-2-phenyl-indole and acridine orange (AO)], images of the microorganisms were captured using a digital camera attached to a light microscope. Geometrical, optical, and textural features were extracted from the images using image analysis. Parameters extracted from images of microorganisms stained with AO gave better results for classification of the microorganisms. From these parameters, the best identification parameters that could classify the microorganisms with higher accuracy were selected using a probabilistic neural network (PNN). PNN was then used to classify the microorganisms with a 100% accuracy using nine identification parameters. These parameters are: 45°run length non-uniformity, width, shape factor, horizontal run length non-uniformity, mean gray level intensity, ten percentile values of the gray level histogram, 99 percentile values of the gray level histogram, sum entropy, and entropy. When the five microorganisms were mixed together then, also the PNN could classify the microorganisms with 100% accuracy using these nine parameters.