Peptides were immobilized onto superparamagnetic beads via photocleavable linkers. This enabled simple, rapid, and label-free protein kinase assays via MALDI-TOF MS detection of substrate peptide phosphorylation. Abltide, a model substrate for the Abl protein tyrosine kinase model, was coupled onto amine-terminated beads, incubated with ATP and recombinant c-Abl kinase, and released and further detected to determine phosphorylation. Abltide phosphorylation was found to depend significantly on the length and composition of linkers to the bead surface. Inserting a diblock spacer of poly(glycine) and poly(ethylene glycol) segments markedly enhanced phosphorylation. To validate the assay, the activity of two small-molecule kinase inhibitors, imatinib and dasatinib, which target the oncogenic mutant tyrosine kinase Bcr-Abl to treat chronic myeloid leukemia (CML), was tested. Examining inhibition of the purified c-Abl or Bcr-Abl in K562 CML cell extracts, IC50 values were determined to be consistent with the literature. This simple, label-free, MALDI-based protein kinase assay can be readily adapted to allow multiplexed assays of multiple peptide substrates and/or analysis of alternative post-translational modifications as a tool for drug discovery and clinical testing.