Materials and materials with magnetic properties are one of the mainstays of the world of mankind. Magnets are the key elements of most devices used in industry, science and technology. The development of permanent magnet manufacturing technology taking into account the maximum efficiency of the generated magnetic field with a minimum size of the magnet can be divided into two key directions: changing the composition of the magnet and changing the shape of the magnetic field. The research in this paper is aimed at developing a technology for manufacturing shaped magnets for controlling the shape of the magnetic field. Modern production technologies actively use various software products to simulate the design, composition, physical and chemical properties of the final product. For more precise manufacturing and minimization of post-processing, 3-D automated complexes are used, that make it possible to produce a finished product. Manual labor is gradually being replaced by machine labor, and the role of man at the place of production is gradually changing. Large-scale production begins to use robotic systems and conveyors, which significantly increases productivity, reduces costs and the influence of the human factor on the quality of the finished product. The market of additive technologies has been growing at an increasing pace in recent years. The paper considers the application of additive technologies for obtaining materials of complex shape with magnetic properties. The substantiation and solutions of the main obstacles in the development of a new technology for the manufacture of shaped magnetic materials are proposed. Technological solutions and equipment giving the possibility to obtain magnetic materials through the use of additive technologies make a motion.