Numerous electromagnetic changes possibly related with earthquakes have been independently reported and have even been attempted to apply to short-term prediction of earthquakes. However, there are active debates on the above issue because the seismogenic process is rather complicated and the studies have been mainly empirical (i.e. a kind of experience-based approach). Thus, a physics-based study would be helpful for understanding earthquake-related electromagnetic phenomena and strengthening their applications. As a potential physics-based approach, I present an integrated research scheme, taking into account the interaction among observation, methodology, and physical model. For simplicity, this work focuses only on the earthquake-related DC-ULF electromagnetic phenomena. The main approach includes the following key problems: (1) how to perform a reliable and appropriate observation with some clear physical quantities; (2) how to develop a robust methodology to reveal weak earthquake-related electromagnetic signals from noisy background; and (3) how to develop plausible physical models based on theoretical analyses and/or laboratory experiments for the explanation of the earthquake-related electromagnetic signals observed in the field conditions