Sexual selection theory predicts that phenotypic traits used to choose a mate should reflect honestly the quality of the sender and thus, are often costly. Physiological costs arise if a signal depends on limited nutritional resources. Hence, the nutritional condition of an organism should determine both its quality as a potential mate and its ability to advertise this quality to the choosing sex. In insects, the quality of the offspring's nutrition is often determined by the ovipositing female. A causal connection, however, between the oviposition decisions of the mother and the mating chances of her offspring has never been shown. Here, we demonstrate that females of the parasitic wasp Nasonia vitripennis prefer those hosts for oviposition that have been experimentally enriched in linoleic acid (LA). We show by 13 C-labelling that LA from the host diet is a precursor of the male sex pheromone. Consequently, males from LA-rich hosts produce and release higher amounts of the pheromone and attract more virgin females than males from LA-poor hosts. Finally, males from LA-rich hosts possess three times as many spermatozoa as those from LA-poor hosts. Hence, females making the right oviposition decisions may increase both the fertility and the sexual attractiveness of their sons.