“…[14][15][16] These modifications,i nw hich sulfur becomes gradually less nucleophilic with increasing oxidation state, involve as ignificant fraction of protein sulfidrylsi nt he cell [10] and can increase functional diversity in proteins, which modulates their metal binding ability [17] and chemical behavior. [18] Recently,avariety of mass spectrometric studies have been able to identify the reactive intermediates formed by (interfacial) ozonolysis of deprotonated cysteineatthe air-liquid interface, [5,19] to probe the stability and fragmentation behavior of intact and modified sulfinyl radical ions, [20,21] and elucidate the intrinsic mechanism involved in the formationo fc ysteine oxo forms [cysSO x ] À (x = 1, 2, 3) and sulfenate radicala nions in the gas phase. [22] The unambiguous and detailed characterization of the structurala nd dynamic behavior of theset ransient intermediates in isolated environments, in which external interferences are absent,w ill help to reveali ntrinsic properties rele-vant to their biological activity.T he inherentb onding and conformationalf eatureso fc ysteine in its (de)protonated, [23,24] nitrosated, [25] and metal-tagged [26] forms have been previously interrogated both in the free amino acid and in the residue embodied in the glutathione peptide [27] by aj oint computational and experimental infrared multiple photon dissociation (IRMPD) assay.I RMPD spectroscopy,c oupled with ESI tandem mass spectrometry (MS/MS), is ap ivotalt ool to provide direct structural clues about gaseous (bio)molecular ions, [28][29][30][31][32][33] including (de)protonations ite, metal-binding patterns,a nd local intramolecular interactions in both native and modified amino acids and peptides, [34][35][36][37][38][39][40][41][42] DNA/RNA bases and nucleotides, …”