The third heart sound is normally heard during auscultation of younger individuals but disappears with increasing age. However, this sound can appear in patients with heart failure and is thus of potential diagnostic use in these patients. Auscultation of the heart involves a high degree of subjectivity. Furthermore, the third heart sound has low amplitude and a low-frequency content compared with the first and second heart sounds, which makes it difficult for the human ear to detect this sound. It is our belief that it would be of great help to the physician to receive computer-based support through an intelligent stethoscope, to determine whether a third heart sound is present or not. A precise, accurate and low-cost instrument of this kind would potentially provide objective means for the detection of early heart failure, and could even be used in primary health care. In the first step, phonocardiograms from ten children, all known to have a third heart sound, were analysed, to provide knowledge about the sound features without interference from pathological sounds. Using this knowledge, a tailored wavelet analysis procedure was developed to identify the third heart sound automatically, a technique that was shown to be superior to Fourier transform techniques. In the second step, the method was applied to phonocardiograms from heart patients known to have heart failure. The features of the third heart sound in children and of that in patients were shown to be similar. This resulted in a method for the automatic detection of third heart sounds. The method was able to detect third heart sounds effectively (90%), with a low false detection rate (3.7%), which supports its clinical use. The detection rate was almost equal in both the children and patient groups. The method is therefore capable of detecting, not only distinct and clearly visible/audible third heart sounds found in children, but also third heart sounds in phonocardiograms from patients suffering from heart failure.