We describe main issues and design principles of an efficient implementation, tailored to recent generations of Nvidia Graphics Processing Units (GPUs), of an Algebraic MultiGrid (AMG) preconditioner previously proposed by one of the authors and already available in the open-source package BootCMatch: Bootstrap algebraic multigrid based on Compatible weighted Matching for standard CPU. The AMG method relies on a new approach for coarsening sparse symmetric positive definite (s.p.d.) matrices, named coarsening based on compatible weighted matching. It exploits maximum weight matching in the adjacency graph of the sparse matrix, driven by the principle of compatible relaxation, providing a suitable aggregation of unknowns which goes beyond the limits of the usual heuristics applied in the current methods. We adopt an approximate solution of the maximum weight matching problem, based on a recently proposed parallel algorithm, referred as the Suitor algorithm, and show that it allow us to obtain good quality coarse matrices for our AMG on GPUs. We exploit inherent parallelism of modern GPUs in all the kernels involving sparse matrix computations both for the setup of the preconditioner and for its application in a Krylov solver, outperforming preconditioners available in Nvidia AmgX library. We report results about a large set of linear systems arising from discretization of scalar and vector partial differential equations (PDEs).