2022
DOI: 10.1098/rsos.220531
|View full text |Cite
|
Sign up to set email alerts
|

A master equation for power laws

Abstract: We propose a new mechanism for generating power laws. Starting from a random walk, we first outline a simple derivation of the Fokker–Planck equation. By analogy, starting from a certain Markov chain, we derive a master equation for power laws that describes how the number of cascades changes over time (cascades are consecutive transitions that end when the initial state is reached). The partial differential equation has a closed form solution which gives an explicit dependence of the number of cascades on the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
7
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 14 publications
(8 citation statements)
references
References 85 publications
1
7
0
Order By: Relevance
“…where Resistance drift is mainly caused by internal defects or degradation of the film. The power law equation is used to describe the resistance drift 34 :…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…where Resistance drift is mainly caused by internal defects or degradation of the film. The power law equation is used to describe the resistance drift 34 :…”
Section: Resultsmentioning
confidence: 99%
“…Resistance drift is mainly caused by internal defects or degradation of the film. The power law equation is used to describe the resistance drift 34 : Rtbadbreak=R00.33emtτ0α,0.33em$$\begin{equation}{R}_t = {R}_0\ {\left(\frac{t}{{{\tau }_0}}\right)}^\alpha ,\ \end{equation}$$where Rt${R}_t$ represents the measured resistance, R 0 and τ 0 are the initial constants, and α is the resistance drift coefficient measuring the drift speed. Figures 3A–C display the resistance drift of [GeSb(7 nm)/Sb(3 nm)] 5 , [GeSb(5 nm)/Sb(5 nm)] 5 , and pure Sb films at isothermal temperature 85°C, respectively.…”
Section: Resultsmentioning
confidence: 99%
“…From a statistical analysis point of view, a reliable verification of a power-law function is only considered when the fit is over 1.5 orders of magnitude or more, on both the x-axes and y-axes [18], Rau (2002) [22], Stumpf and Porter (2012) [23], Andriani and McKelvey (2019) [24], and Roman and Bertolotti (2022) [25]).…”
Section: Allometry Geometry and The Quarter-power Scaling Rulementioning
confidence: 99%
“…Unfortunately, even an apparently simple system of low dimensionality can be complex enough to generate this kind of behavior [35]. Moreover, socio-environmental systems are subject to unforeseeable events, such as natural disasters [36], emergent social inequality and technological breakthroughs [37,38], which can introduce additional unpredictable features.…”
Section: Introductionmentioning
confidence: 99%