Automatic guided vehicles (AGVs) in the horizontal area play a crucial role in determining the operational efficiency of automated container terminals (ACTs). To improve the operational efficiency of an ACT, it is essential to decrease the impact of battery capacity limitations on AGV scheduling. To address this problem, this paper introduces battery swapping and opportunity charging modes into the AGV system and proposes a new AGV scheduling problem considering the hybrid mode. Firstly, this study describes the AGV scheduling problem of the automated container terminals considering both loading and unloading tasks under the hybrid mode of battery swapping and charging. Thereafter, a mixed-integer programming model is established to minimize the sum of energy costs and delay costs. Secondly, an effective adaptive large neighborhood search algorithm is proposed to solve the problem, in which the initial solution construction, destroy operators, and repair operators are designed according to the hybrid mode. Finally, numerical experiments are conducted to analyze the effectiveness of the model and the optimization performance of the algorithm. The results demonstrate that the hybrid mode of battery swapping and charging can effectively reduce the number of battery swapping times and scheduling costs compared to the existing mode.